News

AMBER (Advanced Materials and Bio-Engineering Research Centre), the Science Foundation Ireland-funded National Materials Science Research Centre, hosted in Trinity College Dublin, has today published its impact assessment report which details the last 10 years of nanoscience and materials science in Ireland.

This impact assessment report rigorously assesses the impact that AMBER, and its predecessor CRANN, have made to the Irish economy and wider society in the last 10 years. Working with the impact framework as defined by Science Foundation Ireland, AMBER has thoroughly interrogated research impacts across 7 key pillars – Economic and Commercial, Societal, International Engagement, Policy & Public Services, Health and Wellbeing, Environmental and Human Capacity. The report demonstrates that continued funding (under review by SFI) will allow AMBER to become one of the international centres of choice for collaborative industry research and help Ireland further its research profile in materials science and so promote Ireland as a destination for attracting hi-tec companies and inward investment. The centre has and will continue to attract leading industry and academic researchers into Ireland. AMBER’s vision is to grow and become a critical hub in the country’s innovation strategy - creating more opportunities for company spin-outs and growth.

Key Highlights of the Report include
• Ireland ranked 1st in the world for nanoscience research and 3rd for materials science research in 2016
• For every €1 invested, AMBER and CRANN have helped the Irish economy to grow by €5
• AMBER and its predecessor CRANN generated over 14,000 jobs in Ireland over 10 years and during this time had a total income of €108 million generating a gross output nationwide of over €505 million
• The institute has worked with more than 200 companies in Ireland and internationally and has received €4.4 M of industry cash in the last four years with a further €1.7M contracted
• Over €45 million European funding has been awarded to CRANN and AMBER academics
• Over 2,400 research papers, generating over 76,000 citations have been published by AMBER researchers– 45% of AMBER academics have taken out a patent compared to 8% of Irish academics and 6% of UK academics
• AMBER researchers have been awarded more ERC funding than any other research centre in Ireland and Prof Valeria Nicolosi is Europe’s only 5 time ERC awardee
• AMBER and CRANN academics are far more engaged across a broad range of knowledge exchange activities than either Irish or UK academics, including giving invited lectures, working with research consortia and engaging with industry – 79% of CRANN/AMBER academics gave invited lectures compared to 50% of Irish academics and 55% of UK academics.

Announcing the publication of the report, An Tánaiste and Minister for Business, Enterprise and Innovation Frances Fitzgerald T.D. said: “A key part of Government’s Action Plan for Jobs is prioritising research and innovation, and ensuring that spend in this area is focused on turning good research into tangible applications, investment and jobs. The results contained in today’s report are testimony to the impressive research discoveries, significant industry collaborations, new patents and new technologies delivered by AMBER, all of which delivers real societal and economic impact, positioning Ireland as first and third internationally for nanoscience research and materials science research respectively last year. Government remains firmly committed to supporting high quality, internationally competitive research with the potential to generate jobs and support economic growth. I commend Professor Morris and all of his team on these impressive results.”

Minister of State for Training, Skills, Innovation, Research and Development John Halligan T.D.said, “It is no exaggeration to say that a key part of Ireland’s economic recovery can be attributed to the quality of our research centres and their output. AMBER’s world-leading research has attracted and continues to attract FDI into Ireland, creating thousands of jobs and spurring growth amongst innovative domestic companies too. Leading multinationals have stated in this Impact Assessment Report that a key reason for their selecting Ireland as a base, is their work with AMBER, the quality of which is unrivalled in many areas. AMBER’s researchers are making world-first discoveries that are leading to new Irish start-ups, and helping global corporations deliver new applications in the areas of ICT, energy and medicine, among others. Government is committed to supporting centres like AMBER, through Science Foundation Ireland, and as part of our national Innovation Strategy.”

Commenting on the report, Dr Darrin Morrissey, Director of Programmes at Science Foundation Ireland said: “The report demonstrates the significant positive impact that has been made by the AMBER SFI Research Centre in Ireland over the past 10 years. AMBER, through world-leading researchers, is creating new knowledge and intellectual property. It is transferring that knowledge to industry through licensing agreements, industrial staff exchanges and spin-outs. The report highlights the impressive outputs from AMBER and demonstrates how Ireland’s research community are world-leading and making tangible impacts on our economy.”

Speaking at the launch, Professor Mick Morris, Director of AMBER, said: “We are delighted that the hard work of our researchers and staff over the last 10+ years is effectively demonstrated in this report through the significant contribution that CRANN and AMBER have made to the economic and societal wellbeing of our local, regional and national communities and through our international research. In the next decade nanoscience and materials science in Ireland will lead on the international stage and we remain committed to making a difference to the social and economic well-being of Ireland through the quality of our research and training for graduates and our engagements with businesses and communities both nationally and internationally. This report showcases the critical importance for AMBER to continue to be funded for world class research so that we can deliver, scientific, economic and societal impacts into Ireland for the benefit of the entire population.”

Domhnaill Hernon, Head of Innovation Incubation and Experiments in Arts and Technology, Nokia Bell Labs, said: “AMBER is considered as an exemplar academic collaborator across Bells Labs globally and for good reason. They stand out for their ability to engage with industry while delivering world leading scientific research. In my opinion they are a dream partner and acting as the executive sponsor I plan on growing this collaboration substantially.”

Gerardo Bertero, Senior Director at Western Digital, said: “We partner with the best expertise we can find around the globe. As such, we are proud of our association with AMBER. We have found the exchanges to be open, highly intellectual, mutually respectful and of excellent technical and scientific content.”

Dr Cathal Kearney from RCSI (Royal College of Surgeons in Ireland) Department of Anatomy and the Science Foundation Ireland funded AMBER (Advanced Materials and BioEngineering Research) centre has been awarded a €1.375 million European Research Council’s (ERC) Starter Grant for ground-breaking research to combat diabetic foot ulcers. The highly prestigious grant supports researchers across Europe to set-up their own research teams and pursue potentially life-changing innovations. In total, 406 grants were awarded this year to projects across Europe with Dr Kearney receiving one of just two given to Irish institutions.

People with diabetes across the world are at risk of diabetic foot ulcers with up to a quarter of the 422 million diabetic population expected to suffer from the ailment in their lifetime. These wounds are very difficult to heal and are often prone to infection which can lead to amputation. It is estimated that every 30 seconds a limb is amputated as a result of a diabetic foot ulcer. In Ireland alone, 2,400 people were hospitalised in 2015 with the condition and 451 of these cases resulted in amputations.

Dr Cathal Kearney, Principal Investigator in the Tissue Engineering Research Group, RCSI received the funding for his research titled ‘BONDS: Bilayered ON-Demand Scaffolds for diabetic foot ulcers’. The goal of this research programme is to develop a new technology-driven device that will support the body’s own cells to grow new tissues to repair skin damage on the foot caused by ulcers. The device will be made of a sponge-like material and DNA will be delivered inside the device using a novel technology. The delivered DNA will then direct cells that enter the device to heal the wound.

Speaking about the funding, Dr Kearney said: “I am honoured to have been awarded this prestigious research grant from the ERC. In Ireland, it is estimated that €70 million/year is spent on the treatment of diabetic foot ulcers, with almost one in five cases resulting in amputation. This research has the potential to change that for the better for people with diabetes not only in Ireland but across the world.”

Director of Research and Innovation at RCSI, Professor Ray Stallings, welcomed the announcement saying: “This award to Dr Kearney is a testament to his stellar research in the area of biomaterials, and the expertise of RCSI’s Tissue Engineering Research Group that is addressing health issues arising from a range of chronic conditions such as diabetes. This innovation could transform the lives of diabetes patients across the world, and we look forward to seeing the outcomes of Dr Kearney’s work as his research expands as a result of this important grant.”

Dr Kearney has previously secured the prestigious Fullbright scholarship to attend MIT and Harvard University and the Marie Sklowdowska-Curie Fellowship at RCSI. His innovative work on drug delivery has been published in a number of high impact journals. Dr Kearney combines his research interests with a passion for teaching, having won the RCSI President’s Teaching Award 2017.

These coveted ERC Starter Grants support research in the life sciences, physical sciences and engineering, and social sciences and humanities and form part of the “Excellent Science” pillar of the European Union research and innovation programme, Horizon 2020.

Carlos Moedas, European Commissioner for Research, Science and Innovation, said: “Top talent needs good conditions at the right time to thrive. The EU provides the best possible conditions at the early stages of a researcher’s career through the ERC Starting Grants. That’s why this funding is so crucial for the future of Europe as a science hub: it keeps and attracts young talent. This time the ERC attracted researchers of 48 different nationalities based in 23 European countries. It’s an investment that will pay off, boosting the EU’s growth and innovation.”

Craniosynostosis is a developmental condition where children present premature fusion of the skull sutures. This condition affects one out of 2500 live births and can cause damage by limiting brain growth. Scientists based in Ireland are investigating the mechanisms that speed up bone formation in children diagnosed with craniosynostosis. This follows the identification of local microenvironmental changes as a key player in the abnormal activation of a series of genes involved in the accelerated bone formation in the prematurely fused sutures.

Clinicians at the National Paediatric Craniofacial Centre at Temple Street Children’s University Hospital, together with scientists at RCSI (Royal College of Surgeons in Ireland) and the Science Foundation Ireland funded AMBER (Advanced Materials and BioEngineering Research) centre, compared the behaviour of cells from prematurely fused sutures and cells from unfused sutures in order to understand how changes in the local physical environment of the skull directs the premature suture fusion.

Their study, published in Scientific Reports –a leading open access journal from the publishers of Nature - identified that cells from fused sutures have a greater sensitivity to changes in their local environment while also discerned the genetic mechanisms that control that behaviour. In particular, cells from fused sutures prematurely commit towards a bone forming cell type. These insights in the mechanisms by which changes in the physical environment promote the premature fusion of the skull sutures may provide the opportunity to develop new therapeutic strategies for bone repair.

Mr. Dylan Murray, Lead clinician at the National Paediatric Craniofacial Centre at Temple Street Children’s University Hospital commented, ‘This study was possible with the consent of the parents of the children we operate on in Temple Street who have the condition craniosynostosis. Whilst it will never be the case that a fused suture can be treated with medications to reopen them, there are many applications of this scientific breakthrough. An example of this is the possibility of impregnating bone scaffolds with these genes. This will help to stimulate new bone formation. This can be used instead of bone grafts.

Professor Fergal O’Brien, Head of the Tissue Engineering Research Group in RCSI, Deputy Director of AMBER and lead PI on the project noted ‘This is a great example of interdisciplinary research between clinicians and scientists. We are particularly grateful to the patients in Temple St and their families who supported this project’

Commenting on the significance of the research, Dr. Arlyng Gonzalez Vazquez, whom together with Dr. Sara Barreto are the joint-first authors on the study, said: ‘Our findings not only shed new light to understand the mechanisms that control the premature fusion of the skull suture in children with craniosynostosis but also provide new targets that can be incorporated into novel therapeutic target-specific biomaterials to enhance bone formation in patients suffering from severe fractures and bone degeneration’.

This work was supported by the Temple Street, Children’s Fund for Health, the Health Research Board, and the Irish Research Council.

RCSI is ranked in the top 250 institutions worldwide in the Times Higher Education World University Rankings (2017-2018). It is an international not-for-profit health sciences institution, with its headquarters in Dublin, focused on education and research to drive improvements in human health worldwide.

Prof. Daniel Kelly, Investigator at AMBER and Director of the Trinity Centre for Bioengineering has been announced as a recipient of the European Research Council’s (ERC) Proof of Concept Grants. This is the 3rd ERC grant awarded to Prof Kelly and the 12th ERC awarded to researchers in AMBER, the Science Foundation Ireland funded materials science centre based in Trinity College Dublin, since its launch in 2013. This funding will provide Prof. Daniel Kelly with €150,000 over 1.5 years and enable him to verify the innovation potential of ideas arising from his existing ERC funded projects, which focus on a novel implant for treating cartilage damage.

Prof. Kelly won the funding for his project entitled ‘ANCHOR’. The aim of ‘ANCHOR’ is to develop and commercialise a new medicinal product for cartilage regeneration. Cartilage damage is a relatively common type of injury, with the majority of cases involving the knee joint. Damage can occur due to injury or wear and tear, and if not satisfactorily treated can lead to osteoarthritis (OA). OA represents a significant economic burden to patients and society in the world, estimates are that 9.6% of men and 18.0% of women, aged over 60 years, have symptomatic osteoarthritis, with 80% of those having limitations in movement and 25% saying they cannot perform their major daily activities of life*. There is currently no cure and in the most serious cases, the entire joint may need to be replaced with an artificial joint, such as a knee replacement prosthesis.

Prof Kelly’s proposed product comprises a cartilage derived 3D scaffold which acts as a template to guide the growth of new tissue by recruiting endogenous bone marrow derived stem cells. What is unique about the therapy is that the scaffolds will be supported by an array of 3D printed biodegradable polymer posts that will anchor the implants into the bone underneath the cartilage. If successful, such an implant would form the basis of a truly transformative therapy for treating degenerative joint diseases like arthritis. The funding will also allow Prof. Kelly to employ a post-doctoral researcher.

Prof. Daniel Kelly, Principal Investigator at AMBER, said “At present the treatment options for OA are limited to surgical replacement of the diseased joint, with a prosthesis. Joint replacement prosthesis also have a finite lifespan, making them unsuitable for the growing population of younger and more active patients requiring treatment for OA. Our 3D printed polymer posts will anchor the implant into the bone and will be porous to stimulate the migration of stem cells from the bone marrow into the body of the scaffold. While various scaffolds like this have been available for some time, they have had limited success, partly because scaffolds need to be anchored securely due to the high forces experienced within the joint. Our 3D printed posts overcome this problem.”

Prof. Michael Morris, Director of AMBER, commented on the announcement, saying “I’d like to congratulate Professor Kelly on successfully securing his 3rd ERC award. He is doing ground-breaking work in his field that will really make a difference to society. This award demonstrates both the excellence and also the quality of the research team that has been built in AMBER.”

Prof Kelly’s project has resulted from outputs and expertise from his previous ERC Starting Grant and his current ERC Consolidator Grant. As part of the ERC Starting Grant STEMREPAIR, he developed a range of porous cartilage derived scaffolds. He is currently developing 3D printing strategies as part of his ERC Consolidator grant JOINTPRINT.

* http://www.who.int/chp/topics/rheumatic/en/

Background on the European Research Council’s (ERC) Proof of Concept Grants

All Principal Investigators in an ERC frontier research project, that is either on going or has ended less than 12 months before 1 January 2017, are eligible to apply for an ERC Proof of Concept Grant. The Principal Investigator must be able to demonstrate the relation between the idea to be taken to proof of concept and the ERC frontier research project (Starting, Consolidator, Advanced or Synergy) in question. Proof of Concept Grants are up to €150 000 for a period of 18 months.