Dr Kafil M. Razeeb leads the Advanced Energy Materials Group at Tyndall and comments:
“It is really exciting to be part of TRANSLATE. We will apply Darmstadt’s cutting-edge theoretical understanding of how ions move through nanochannels, and develop this into a complete prototype device that can efficiently convert any wasted heat below 100 °C into usable electricity. We will build this using only low-cost and non-toxic materials in order to create a sustainable device that can power the future generation of wireless sensors and wearable tech.”
Over the course of the next four years, Professor Holmes and his colleagues at UCC and Tyndall will be working in collaboration with researchers from the Technical University of Darmstadt, the University of Latvia and Spanish tech SME, Cidete, to turn theory into reality.
If they are successful, researchers involved in the TRANSLATE project will have developed a device that has the potential to harvest one of the largest sources of clean and inexpensive energies available, and, if converted into electricity, could provide a major breakthrough towards sustainable global energy.
Stephen O’Reilly, the FET H2020 National Contact Point for Ireland at Enterprise Ireland congratulated Professor Holmes on his success and noted that
“TRANSLATE is an excellent win for Ireland in what was a very competitive call with a success rate of less than 7%. It is also very topical in light of the European Commission’s Green Deal Policy. With TRANSLATE, Professor Holmes becomes the first researcher in Ireland to successfully coordinate two FET-Open proposals in H2020. This accomplishment is reflective of the excellent scientific research base in Ireland.”
After successfully securing Horizon 2020 funding, the focus of the multidisciplinary research team has turned towards developing and testing the technology required to recycle waste heat into electricity.