AMBER, the SFI Research Centre for materials science based at Trinity College Dublin has today announced a research collaboration with DePuy Ireland Unlimited Company and Johnson & Johnson Services, Inc. The overall goal of TRANSITION, the five-year project funded under Science Foundation Ireland’s Spokes programme, is to develop a new class of 3D printed biological implants that will regenerate, rather than replace, diseased joints.

This project has the potential to transform how we treat degenerative diseases such as osteoarthritis, which at present affects around 915,000 people in Ireland and is thought to affect 10% of the world’s population over the age of 602. Science Foundation Ireland has provided 35% of the funding, with the remainder provided by DePuy Ireland Unlimited Company and Johnson & Johnson Services, Inc.

Orthopaedic medicine involves treating conditions that affect the bones, soft tissue and joints. 3D printing has the potential to transform treatments in orthopaedic medicine and the orthopaedic device industry, enabling the development of personalised implants and accelerating the supply chain of device companies. TRANSITION aims to develop a hybrid device consisting of a titanium core (providing mechanical integrity) overlaid by a layer of functional tissue (engineered bone and articular cartilage) which will be particularly suited to hip and knee implants. In working towards this aim the project team will strive to advance the underpinning science and technology of metal, polymer and biological 3D printing as well as surface treatments and functional coatings. These advances will have direct benefits for improving existing implant technologies in parallel to the end goal. A key goal is to have a subset of products ready for regulatory submission and clinical studies by the end of the research programme.

The announcement was welcomed by Minister for Business, Enterprise and Innovation, Heather Humphreys, TD, who stated, “The TRANSITION collaboration is a step forward in the development of next generation medical devices. The combination of biologics and technology in medicine is an exciting field and I am delighted to see the SFI Research Centre AMBER leading the way for Ireland in this transformative sector. Government is focused on supporting an environment that facilitates collaboration between industry and academia, bringing to bear the expertise and infrastructure within Ireland’s higher education institutions in the pursuit of significant advancement in global healthcare.”

Prof Michael Morris, AMBER Director said, “TRANSITION will build on the combined expertise of both AMBER Investigators and the Johnson & Johnson Family of Companies in manufacturing, surface science, biomaterials, tissue engineering and 3D bioprinting to develop new classes of medical devices. The Spokes programme will leverage key infrastructure in the two new laboratories established by AMBER in Ireland: the new 3D bioprinting lab being established and funded by the Johnson & Johnson Family of Companies and Trinity, and our new AR-Lab (Additive Research) laboratory.”

Prof Mark Ferguson, Director General, Science Foundation Ireland and Chief Scientific Adviser to the Government of Ireland commented, “Science Foundation Ireland welcomes this new AMBER collaboration with the Johnson & Johnson Family of Companies. Having recently invested in the development of the Additive Research laboratory at AMBER, I am delighted to see that this state-of-the-art facility is already attracting investment and collaboration from industry. Science Foundation Ireland is pleased to fund this world class research, which will hopefully lead to next generation orthopaedic implants that can positively impact the lives of millions of people.”

Prof Danny Kelly, AMBER’s lead Principal Investigator on the project said, “Realising the ambitious goal of a new hybrid device to replace diseased joints will require addressing existing challenges in the 3D printing of metals, biodegradable polymers, bioinks and cells, and subsequently integrating the printing processes of these diverse material sets to develop hybrid metal-biological devices capable of restoring joint function. In doing so, this programme of research will transform the production of metallic orthopaedic devices used in hip and knee arthroplasty and has the potential to transform how we treat degenerative diseases such as osteoarthritis.”

“This strategic collaboration builds on the work of our Innovation Centre in Cork (Ireland) and will help identify healthcare solutions that will ultimately enable us to advance care for patients through transformative technologies,” said Euan Thomson, Head of Research and Development, Johnson & Johnson Medical Devices Companies. “Our collaboration with these industry-leading experts will allow our teams in Ireland and across the globe to further our extensive research into 3D printing for therapeutic use, not only in the orthopaedics space, but across our entire Johnson & Johnson portfolio.”

Osteoarthritis (OA), the most common form of arthritis, is a serious disease of the joints affecting nearly 10% of the population worldwide. At present the treatment option for end-stage OA is limited to surgical replacement of the diseased joint with a metal and polymer prosthesis. Although the outcomes of such operations are generally excellent, revision surgery is not uncommon, especially for younger, more active patients where due to age and lifestyle their initial implant is likely to require replacement. Given that the number of total hip arthroplasties performed annually is predicted to double over the next 25 years, innovative new approaches are necessary.

Science Foundation Ireland’s Spokes programme enables the addition of new industrial and academic partners and projects to an SFI Research Centre. TRANSITION will enable the employment of seven postdoctoral researchers and ten PhD students. It involves academics from Trinity (Prof Danny Kelly [lead], Prof Mick Morris, Prof David Hoey, Prof Conor Buckley, Prof Garret O’Donnell, Dr Rocco Lupoi, Dr David Trimble), RCSI (Prof Fergal O’Brien), DCU (Prof Myles Turner) and UCD (Dr Eoin O’Cearbhaill, and Prof Pieter Bramaa).

Researchers at AMBER, the Science Foundation Ireland funded National Materials Science Research Centre, hosted at Trinity College Dublin, in collaboration with Duke University have discovered the emergence of winner-take-all connectivity pathways in random networks, where memory is distributed across the network but encoded in specific connectivity pathways, similar to that found in biological systems. Their research was published today/this week in the prestigious journal, Nature Communications*.

Establishing the optimum pathway across complex networks is a ubiquitous problem: from information networks such as the internet to physical networks of roadways to highly interconnected biological networks within the brain. These findings may help in the development of hardware based neural network systems with brain-inspired architectures for cognitive signal-processing, decision-making systems and ultimately neuromorphic computing applications. Neuromorphic computers outperform conventional computers at tasks that are natural to our brain such as ultra-fast sensory processing, high-level pattern recognition, and motor control.

The research was a collaboration between Professors John Boland and Mauro Ferreira, AMBER researchers in Trinity’s Schools of Chemistry and Physics, Professor Justin Holmes, AMBER researcher at University College Cork as well as researchers from Duke University. Through experiment and simulation, the collaborative team elucidated the properties of nanowire networks that give rise to singular or multiple connectivity pathways.

Nanowires are similar to normal electrical wires but are extremely small, typically a few hundred atoms thick or thinner than one thousandth of the thickness of a human hair. Just like normal wires, nanowires can be made from a variety of different materials and typically have surface coatings either from their growth process or an engineered coating to stop them clumping together in solution. By changing the nanowire material, or the coating on the nanowire the team found that networks can develop different types of connectivity pathways, and importantly identified the conditions required for the emergence of a single lowest-energy most-efficient pathway.

To understand preferred pathways, think of walking through a University campus or business park with some grassy areas and paths connecting the different buildings. There will be foot-worn short cuts in the grass that people take to save time and energy. The combination of frequently used paved and unpaved pathways are the most practical or preferred pathways for moving efficiently. The human brain develops preferred communication pathways that link together different brain circuits or loops to quickly and efficiently complete specific tasks and this research shows evidence for the same behaviour in a nanowire network.

Prof John Boland, AMBER and Trinity’s School of Chemistry, said, “Nanowire networks offer promising architectures for neuromorphic applications due to their connectivity. Where one nanowire is in contact with another nanowire a junction is formed that behaves like a memory switch, and the behaviour of the network is dominated by the response of these junctions. In this work, we discovered a special symmetry that allows a network of junctions to respond as if it is a single junction. A particular class of junctions then naturally leads to the emergence of a “winner-takes-all” electrically conducting path that spans the entire network, and which we show corresponds to the lowest-energy connectivity path.”

“Even more surprising was that for silver nanowires, which prefers to self-select a single lowest energy pathway across the random network, once the pathway is established it forms a series of discrete memory levels. These results point to the possibility of developing and independently addressing memory levels in complex systems and which we expect to have important implications for computers that operate in a more brain-like fashion.”

The next goal of the research is to understand how to engineer this single or multipath behaviour, and to develop logic systems based on these nanowire network materials for cognitive signal-processing, decision-making systems and ultimately neuromorphic computing applications.

This publication has emanated from research supported in part by Prof John Boland’s Advanced Grant from the European Research Council.

*“Emergence of Winner-takes-all Connectivity Paths in Random Nanowire Networks”, Nature Communications

Activation of silver nanowire network

This week AMBER (Advanced Materials and Bio-Engineering Research Centre), the Science Foundation Ireland-funded National Materials Science Research Centre, based in Trinity College Dublin, will host leading international scientists at a one day gathering focused on the wonder material graphene on Thursday 2nd August, in the Science Gallery. Graphene is both the thinnest and the strongest material known to science and its discovery has been crucial for our ability to (among other things) create extremely sensitive sensors for medical devices, build incredibly durable cycling helmets, make our touch phone screens more sensitive, and even grow healthy tissue for the heart.

The graphene workshop’s focus will mark the 10th anniversary of the Liquid Phase Exfoliation (LPE) technique pioneered by Professors Jonathan Coleman and Valeria Nicolosi from AMBER. This revolutionary LPE technique essentially unlocked the material graphene for use for industry - previously it was not cost efficient for industry to produce large amounts of the material. Graphene conducts electricity better than copper and so the mass production of this material has had massive implications for industry and further research of the material.

It is forecast that an approximately $300M market, at the graphene supply level, will be formed within the next ten years*. This means that we will find graphene, of different types, in numerous volume applications in the years to come. The LPE technique pioneered by AMBER researchers is now the biggest global graphene production method worldwide.

Professor Vincenzo Palermo, Vice director of Graphene Flagship, said: “The Graphene Flagship is tasked with bringing together academic and industrial researchers to take graphene from the realm of academic laboratories into European society in the space of 10 years. The LPE technique, as developed by Professor Jonathan Coleman and Professor Valeria Nicolosi, was an incredible breakthrough in the area of materials science, and particularly for the Flagship. This technique has opened many doors for cross collaboration with industry and academia.”

Professor Jonathan Coleman, Principal Investigator in AMBER and Trinity’s School of Physics and recent 2018 ACS Nano Award Lecture Laureate awardee said: “Our anniversary event marks some of the wonderful research breakthroughs we in AMBER, and researchers worldwide, have achieved over the last 10 years. For scientists who are working in the area of graphene, their key focus is to take graphene research out of their labs and translate it into tangible applications for industry and society. We are honoured that internationally leading researchers in the field have accepted our invitation to share their insights at our event.”

Harry Swan, Managing Director Thomas Swan & Co Ltd, said: “We collaborated with AMBER and its researchers for a number of years and they were a major contributor to the successful development of our 20 tons per year graphene plant in the UK. I’m delighted to be part of this anniversary event, there is no doubt that graphene continues to be an exciting material with far reaching implications for a wide range of applications.”

Professor Valeria Nicolosi, Principal Investigator in AMBER, said: “In the next decade nanoscience and materials science in Ireland will lead on the international stage and we remain committed to making a difference to the social and economic well-being of Ireland and beyond through the quality of our research. Ten years ago, August 2008, we published a paper in Nature Nanotechnology describing a new method to produce defect-free graphene nanosheets in liquids. Dubbed liquid phase exfoliation (LPE), this method used ultrasonic energy to separate few-layer graphene nanosheets from their parent crystal in certain stabilising solvents. We showed that the resultant dispersions could be used for further study or processed into functional structures. Little did we know how far this curiosity-driven, side project would go over the subsequent decade. At this point, it is worthwhile pausing to take stock of what LPE has achieved, where it is today and how best it can be developed into the future. Over the course of the day speakers will show us a roadmap for possible applications of graphene, showing how it is a disruptive technology, and also we will get an exclusive glimpse into some new research developments.”

The one day anniversary event will cover leading international speakers including: Andrea Ferrari, University of Cambridge on ‘Graphene – the material for future technology’, Professor Valeria Nicolosi, AMBER, ’10 years down the road…what has LPE enabled us to do so far’, Jonathan Coleman, AMBER ‘Splitting layers – an overview of LPE’, and Thomas Heine, TU Dresden – ‘Two-dimensional materials in three dimensions’ and Vincenzo Palermo, Chalmers University – ‘Graphene exfoliation for large-scale applications: ideal nanosheets vs. real commercial products’.


Over 4,000 delegates from nearly 70 countries from across the globe will congregate in Dublin this month for the 8th World Congress of Biomechanics (WCB2018). WCB2018 will be co-hosted by RCSI (Royal College of Surgeons in Ireland) and Trinity College Dublin in partnership with AMBER, the Science Foundation Ireland-funded materials science and bioengineering research centre. The Congress is held once every 4 years and will bring together engineers and scientists from various disciplines including biology, physics, mathematics, computer science, chemistry and various clinical specialties.

Prof. Fergal O’Brien, RCSI Professor of Bioengineering & Regenerative Medicine, AMBER Deputy Director and Co-Chair of WCB2018 said “Winning the WCB 2018 bid means we are in effect bringing the World Cup of Biomechanics to Dublin. With an interdisciplinary focus spanning engineering, medicine, life sciences and industry, this event will be a significant boost for Ireland’s growing international reputation for bioengineering research as exemplified by the research at RCSI and AMBER which is partnering with industry to translate world class scientific research to the benefit of patients and society. We are honoured that over 400 of the world’s leading researchers in the field have accepted our invitation to speak here this week.”

Prof. Daniel Kelly Trinity Professor of Tissue Engineering, AMBER Investigator and Co-Chair of WCB2018 said “The field of biomechanics sits at the interface of engineering and medicine, and research in the field has revolutionised medicine, particularly in the area of medical devices. Ireland’s medical technology sector has evolved into one of the leading clusters globally. 18 of the world’s top 25 medical technology companies have a base in Ireland and 50% of the over 400 medtech companies based here are indigenous. Ireland is therefore the ideal location for a congress that aims to enhance links between the clinical and academic research community and industry in the medical technology sector.”

The five-day scientific programme at the WCB2018 will cover speakers from across a wide spectrum of the sector including: Imaging and Device Biomechanics; Biofluid and Biotransport; Multiscale Biomechanics; Organ Biomechanics; Tissue Biomechanics; Cellular Biomechanics; Molecular Biomechanics and Whole Body Biomechanics. Applications range from basic biology to medical devices and the latest technologies. Exhibitions will highlight the latest technologies, publications, and medical devices.

Highlights of the conference will include:

• Professor Julie Steele’s biomechanics research over the past 30+ years has enabled countless individuals to participate comfortably and safely in their daily activities. Professor Steele, from the School of Medicine at the University of Wollongong, is founder and director of the internationally renowned Biomechanics Research Laboratory and Breast Research Australia. She has been actively involved in researching the effects of obesity and ageing on lower limb structure and function with implications for footwear design to promote physical activity and reduce falls in the elderly. In addition, she is very involved in breast health biomechanics and the aim of her research in this space is to ensure that any female, irrespective of age, health status or breast size, can enjoy the health benefits associated with regular exercise without suffering breast discomfort.

• Elazer R. Edelman is Professor of Medicine at Harvard Medical School, and Senior Attending Physician in the coronary care unit at the Brigham and Women’s Hospital in Boston. He has translated basic findings in vascular biology to the development of next generation medical devices such as cardiovascular stents - which has revolutionised healthcare and saved countless lives. Dr Edelman directs the Harvard-MIT Biomedical Engineering Center (BMEC).

• Dr Niamh Nowlan from Dublin and a graduate from Trinity College Dublin, but now based in the Department of Bioengineering of Imperial College London, UK, works in the area of developmental biomechanics, with particular focus on fetal movements. She will talk about two key research areas of interest; how mechanical forces induced by prenatal movements affect bone and joint formation before birth, and how fetal movements may be used as an indicator of fetal health and function.